Linear Koszul Duality and Fourier Transform for Convolution Algebras
نویسندگان
چکیده
In this paper we prove that the linear Koszul duality isomorphism for convolution algebras in K-homology of [MR3] and the Fourier transform isomorphism for convolution algebras in Borel– Moore homology of [EM] are related by the Chern character. So, Koszul duality appears as a categorical upgrade of Fourier transform of constructible sheaves. This result explains the connection between the categorification of the Iwahori–Matsumoto involution for graded affine Hecke algebras in [EM] and for ordinary affine Hecke algebras in [MR3]. 2010 Mathematics Subject Classification: 18E30, 16E45, 16S37
منابع مشابه
Iwahori-Matsumoto involution and linear Koszul Duality
In this paper we use linear Koszul duality, a geometric version of the standard duality between modules over symmetric and exterior algebras studied in [MR1, MR2] to give a geometric realization of the Iwahori–Matsumoto involution of affine Hecke algebras. More generally we prove that linear Koszul duality is compatible with convolution in a general context related to convolution algebras.
متن کاملLinear Koszul Duality and Affine Hecke Algebras
In this paper we prove that the linear Koszul duality equivalence constructed in a previous paper provides a geometric realization of the Iwahori-Matsumoto involution of affine Hecke algebras.
متن کاملNotes on Koszul duality (for quadratic algebras)
3 Koszul duality 22 3.1 Quadratic algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2 Dual coalgebra and algebra . . . . . . . . . . . . . . . . . . . . . 23 3.3 Some more examples . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.1 The free algebra . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.2 An example from Fröberg . . . . . . . . . . . . . . . . . . 28 3.3.3 ...
متن کاملGale Duality and Koszul Duality
Given a hyperplane arrangement in an affine space equipped with a linear functional, we define two finite-dimensional, noncommutative algebras, both of which are motivated by the geometry of hypertoric varieties. We show that these algebras are Koszul dual to each other, and that the roles of the two algebras are reversed by Gale duality. We also study the centers and representation categories ...
متن کاملLinear Koszul duality, II: coherent sheaves on perfect sheaves
In this paper we continue the study (initiated in [MR1]) of linear Koszul duality, a geometric version of the standard duality between modules over symmetric and exterior algebras. We construct this duality in a very general setting, and prove its compatibility with morphisms of vector bundles and base change.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015